

Kaihua Chen

<https://kaihua-chen.github.io/>
Pittsburgh, PA, United States
kaihuac5@gmail.com or +1 412-320-0373

Education	Carnegie Mellon University , Pittsburgh, PA <i>Master of Science in Computer Vision</i> Advisor: Prof. Deva Ramanan GPA: 4.17/4.00 Courses: Machine Learning, 3D Vision, Generative Models, Math for Robotics	Aug 2023-Dec 2024
	China Agricultural University , Beijing, China <i>Bachelor of Engineering in Computer Science (Minor: Mathematics)</i> GPA: 3.91/4.00 (rank: 1/39)	Sept 2019-Jul 2023
Selected Publications	Kaihua Chen *, Tarasha Khurana*, Deva Ramanan. <i>Reconstruct, Inpaint, Test-Time Finetune: Dynamic Novel-view Synthesis from Monocular Videos</i> . Proceedings of the Annual Conference on Neural Information Processing Systems (NeurIPS), 2025.	
	Kaihua Chen , Deva Ramanan, Tarasha Khurana. <i>Using Diffusion Priors for Video Amodal Segmentation</i> . Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2025.	
	Yizhou Zhao, Hengwei Bian, Kaihua Chen , et al. <i>Metric from human: Zero-shot monocular metric depth estimation via test-time adaptation</i> . Proceedings of the Annual Conference on Neural Information Processing Systems (NeurIPS), 2024.	
	Cheng-Yen Hsieh, Kaihua Chen , Achal Dave, Tarasha Khurana, Deva Ramanan. <i>TAO-Amodal: A Benchmark for Tracking Any Object Amodally</i> . arXiv:2312.12433, 2024.	
Other Publications	Kaihua Chen , Tingting Zhu, Shaofeng Li, Yinxue Shi. <i>Facial keypoint-based segment-level driver yawning detection by graph-temporal convolutional neural network modeling</i> . International Conference on Intelligent Computing (ICIC), 2025 (released on arXiv in 2023).	
	Kaihua Chen , Tingting Zhu, Shaofeng Li, Yinxue Shi. <i>Real-time Yawning Detection Based on Machine Learning Algorithm and Time Series Classification using Facial Feature Points</i> . IEEE International Conference on High Performance Big Data and Intelligent Systems (HPBD&IS), 2021.	
Research Experience	Carnegie Mellon University , Pittsburgh, PA Research Associate at Deva's Lab, advised by Prof. Deva Ramanan <i>Camera-conditioned Long Video Generation as World Model (Ongoing)</i> <ul style="list-style-type: none">• Investigate autoregressive video diffusion framework for camera-conditioned long-horizon video generation with large view transitions, focusing on mitigating error accumulation, maintaining long-term spatial memory, and enabling accurate camera control <p><i>Dynamic 4D Novel-view Synthesis from Monocular Videos</i></p> <ul style="list-style-type: none">• Designed CogNVS, a video diffusion based on CogVideoX, to synthesize free-viewpoint novel views from monocular videos, by inpainting and fixing MegaSAM point cloud renders• Devised a self-supervised data generation strategy that repurposes any 2D videos into geometry-structured training pairs, enabling training on web-scale datasets and test-time finetuning during inference for improved generalization• The work is accepted to NeurIPS '25: https://cog-nvs.github.io/	Jan 2024-Present

Diffusion Priors for Video Amodal Segmentation

- Developed a two-stage video diffusion model based on Stable Video Diffusion with depth conditioning to synthesize wholes of partially or fully occluded objects, enabling user-interactive object-level amodal segmentation and content completion in videos
- Established TAO-Amodal Masks benchmark (<https://tao-amodal.github.io/>) by evaluating baselines, including fine-tuned amodal segmentors, self-supervised completion algorithms, and ViT regression models
- The work is accepted to CVPR '25: <https://diffusion-vas.github.io/>

University of Toronto, Toronto, ON, Canada

Jul 2022-Oct 2022

ML Research Intern at Lin Brain Lab, advised by Prof. Fa-Hsuan Lin

Correlating Human Neural Activity and Behaviors by Machine Learning

- Investigated correlations between fMRI brain imaging, EEG signals, natural stimuli, and subjective feelings, employing a spherical convolution-based UNet and LSTM autoencoder pretrained on Human Connectome Project (HCP) emotion tasks
- The work is accepted as a poster at ISMRM '23

China Agricultural University, Beijing, China

Apr 2021-Mar 2022

Undergraduate Researcher at Department of Computer Science

AI-Powered Facial Behavior Analysis

- Innovated a Graph-Temporal Convolutional Network (GTCN) for real-time drowsiness detection based on facial keypoints recognized by OpenPose, achieving a 2.6% accuracy improvement on YawDD compared with SOTA and deploying the system on Raspberry Pi 4B
- The work is accepted to HPBD&IS '21 and ICIC '25 (initially released in 2023)

Course Projects

Zero-shot Monocular Metric Depth Estimation (CMU 16-825)

Jan 2024-May 2024

- Developed a zero-shot adaptation method that converts relative depth to metric depth using generative painting and human mesh recovery, achieving strong generalization in unseen scenes; the work is accepted to NeurIPS '24

Robust 3D Surface Reconstruction (CMU 16-811)

Oct 2023-Dec 2023

- Implemented Poisson Surface Reconstruction in Python, introducing a random adaptive resampling technique to address highly non-uniform point clouds

Intelligent Bitcoin and Gold Trading Strategy (2022 MCM Finalist)

Feb 2022

- Devised a trading strategy based on temporal deep learning prediction and greedy Markov decision process, achieving 30x return in simulated trading

IoT System for Greenhouse Environment Monitoring

Apr 2020-Mar 2021

- Constructed an Arduino UNO-based IoT system featuring a PyQt GUI, enabling data collection, wireless transmission, and remote control, and obtained software copyright

Awards

2022 International Mathematical Contest In Modeling (MCM), Finalist (Top 1%)

2021 National Scholarship (Top 1%)

2020 Arawana Scholarship (Top 2%)

2020, 2021 Outstanding Student Scholarship, First Prize (Top 5%)

12th Chinese Mathematics Competitions (CMC), Second Prize

31st Beijing Mathematics Competition (Group A), Second Prize

2020 Huawei Cup Mathematics Competition, Third Prize

Personal

Programming Languages: Python (Proficient); C/C++, Java, MATLAB, SQL (Familiar)

Libraries: PyTorch, Diffusers, NumPy, Matplotlib, Scikit-learn, OpenCV, Open3D, Gsplat, Git

Hobbies: Movies, Soccer